

Form:	Form Number	EXC-01-02-02A
Course Syllabus	Issue Number and Date	2/3/24/2022/2963 05/12/2022
	Number and Date of Revision or Modification	
	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	06

1.	Course Title	Advanced Bioinorganic Chemistry
2.	Course Number	0303725
2	Credit Hours (Theory, Practical)	3 theory
5.	Contact Hours (Theory, Practical)	
4.	Prerequisites/ Corequisites	-
5.	Program Title	M.Sc. Chemistry
6.	Program Code	0303
7.	School/ Center	Science
8.	Department	Chemistry
9.	Course Level	Master Level
10.	Year of Study and Semester (s)	-
11	Other Department(s) Involved in	-
11.	Teaching the Course	
12.	Main Learning Language	English
13	Loorning Typos	\Box Face to face learning \boxtimes Blended \Box Fully
15.	Learning Types	online
14.	Online Platforms(s)	\Box Moodle \Box Microsoft Teams
15.	Issuing Date	
16.	Revision Date	

17. Course Coordinator:

Name: Dr. Afnan Al-hunaiti	Contact hours:	
Office number:	Phone number:	
Email: a.alhunaiti@ju.edu.jo		

18. Other Instructors:

Name:
Office number:
hone number:
Email:
Contact hours:
Jame:
Office number:
hone number:
Email:
Contact hours:

19. Course Description:

An introductory as well as advanced aspect and methods in bioinorganic chemistry are all developed during the course. The course will provide students with a general overview of the many very fundamental tasks performed by inorganic elements like "Metal Ions in Proteins" and "Special Cofactors and Metal Clusters" in living organisms. Methods and theories with particular emphasis on enzymatic conversions and electron transfer will be discussed in view of its importance in bioinorganic chemistry. This goes along with the elucidation of model systems and technical applications of both, concepts learned from nature as well as biological systems.

20. Program Student Outcomes (SO's): (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program) SO1. Demonstrate comprehensive knowledge and understanding of chemistry topics, achieving expertise in foundational research principles.

SO2. Develop independent research skills to solve complex problems, focusing on analytical and critical thinking.

SO3. Improve communication of scientific knowledge through structured reports, presentations, and discussions.

SO4. Engage in activities that enhance practical scientific skills and improve professional expertise.

SO5. Maintain ethical standards in research.

21. Course Intended Learning Outcomes (CLO's): (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

1. Understand how metal ions interact with biological environments and how these interactions influence the properties of metal centres.

2. Apply principles of coordination chemistry as well as principles of inorganic chemistry and organometallics to explain how nature tailors the properties of metal centres for specific applications.

3. Analyze critical questions (asked by fellow students or the instructor) and engage in scientific discussion on bioinorganic chemistry-related topics

4. Demonstrate in written homework the ability to comprehend current problems in bioinorganic chemistry and answer specific scientific questions using the knowledge provided during the course.

5. Understand current publications and reviews in bioinorganic chemistry in high-impact journals at the level that is required to present a self-selected topic to an audience in a conference-style seminar.

	The learning levels to be achieved							
Course	Remembering	Understanding	Applying	Analyzing	evaluating	Creating		
CLOs								
1	\checkmark	\checkmark						
2		\checkmark	\checkmark	\checkmark				
3			\checkmark		√	\checkmark		
4	\checkmark	\checkmark	\checkmark	\checkmark				
5		\checkmark	\checkmark	\checkmark		\checkmark		

22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program SO's	SO(1)	SO	SO	SO	SO (5)
		(2)	(3)	(4)	
Course CLO's					
CLO (1)	\checkmark				
CLO (2)	\checkmark	\checkmark			
CLO (3)		\checkmark			
CLO (4)		\checkmark	\checkmark	\checkmark	
CLO (5)			\checkmark	\checkmark	\checkmark

23. Topic Outline and Schedule:

Week	Lecture	Topic	CLO/s Linked to the Topic	Learning Types Face to Face (FF) Blended (BL) Fully Online (FO)	Platform Used	Synchronous (S) Asynchronous (A)	Evaluation Methods	Learning Resources
1	1,2	Introduction to bioinorganic chemistry, general terms, how and why does nature select inorganic elements? Inorganic	1,2		Class room	S	Mid-	Requi red book in sectio
		Elements and evolution		FF			Final	n 25

1			1.0		<u>C1</u>			
			1,2		Class	8		Requi
					room			red
2	2.1-	Basic biological Coordination						book
-	2.1	Chemistry. Kinetic and						in
		spectroscopic characteristics of					Mid-	sectio
		bioinorganic systems.		FF			Final	n 25
			1,2		Class	S		Requ
					room			ired
2	3.1-	Stroll through the periodic						book
3	3.2	system. Systematic overview						in
		over tasks and examples of					Mid-	sectio
		inorganic elements in biology		FF			Final	n 25
			1,2		Class	S		Requi
					room			red
1	4.1-							book
4	4.2							in
		Ion transport: membranes,					Mid-	sectio
		energy, channels, pumps		FF			Final	n 25
			1,2		Class	S		Requi
					room			red
5	5.1-							book
5	5.2							in
		Biomineralization : the hard					Mid-	sectio
		part of bioinorganic chemistry		FF			Final	n 25
			1,2		Class	S		Requi
					room			red
6	6.1-	Nanoparticles, Inorganic						book
0	6.2	structural elements in proteins,						in
		RNA & DNA, Lewis acid					Mid-	sectio
		catalysis		FF			Final	n 25
		Bioinorganic coordination	1,2		Class	S		
		chemistry II – transition			room			Requi
	7 1	metals: apply coordination						red
7	7.1-	chemistry of redox active						book
	1.2	metal ions to explain						in
		properties of these metal					Mid-	sectio
		centers		FF			Final	n 25
					Class	S		Requi
					room			red
0	8.1-	Electron transport in biology						book
0	8.2	– iron sulfur clusters, enzymes						in
		for respiration, photosynthesis					HW+	sectio
		and related pathways		FF			Final	n 25

					Class	S		Requi
					room	5		red
	91-				room			book
9	9.1	Oxygen transport – metal-						in
	1.2	oxygen coordination in					HW+	sectio
		proteins		FF			Final	n 25
				11	Class	S	1 mai	Requi
					room	5		red
	10.1				room			book
10	-							in
10	10.2	Oxygen activation and					HW+	sectio
		processing by cytochromes		FF			Final	n 25
					Class	S		Requi
	11.1				room			red
11	11.1	Small molecule activation and						book
11	-	conversion by metalloenzymes						in
	11.2	– photosynthetic water					HW+	sectio
		splitting		FF			Final	n 25
			1,2,4,		Class	S		Requi
	12.1	Radicals and	6		room			red
12	12.1	Bioorganometalli c Chemistry						book
12	12.2	– from RNA to DNA and from						in
	12.2	Vitamin B12 to methanogens					HW+	sectio
		and methanotrophs		FF			Final	n 25
			1,2,4,		Class	S		Requi
			6		room			red
13	13.1	Biological conversion and						book
		formation of hydrogen and					Semi	in .
		nitrogen–hydrogenases and		F F			nar-F1	sectio
		nitrogenases	1.0.4	FF	~1		nal	n 25
			1,2,4,		Class	S		Requi
			6		room			red
14	14.1						с ·	book
							Semin	in acatio
		storage toxicity		ГГ			al- FIII	sectio
		Storage toxicity	124	ГГ	Class	ç	ai	II 23
			1, <i>2</i> ,4,		room	S		red
	15.1	Metals in medicine: anti	0		100111			hook
15	-15-	cancer agents diabetes					Semin	in
	2	arthritis radionuclides and					ar- Fin	sectio
		related applications		FF			al	n 25
		related applications		11		I	ai	11 40

16				Final	
10				Exam	

24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mar k	Topic(s)	CLO/s Linked to the Evaluatio n activity	Period (Week)	Platform
Midterm	30	As per Sec. 21 above	1,2	Week 10	In the department
Seminar+Homework	20	As per Sec. 21 above	1,2,4,6	Last week	In the department
Final	50	As per Sec. 21 above	1,2	End of the semester	In the department

25. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific software/platform...etc.):

26. Course Policies:

A- Attendance policies: All students are expected to follow the of attendance policies of the University of Jordan, absences exceeding 15% of total number of class meeting (6-hour classes) will result in F grade or course drop.

B- Absences from exams and handing in assignments on time: University rules and regulations regarding make-up exams.

C- Health and safety procedures: N/A

D- Honesty policy regarding cheating, plagiarism, misbehaviour: University rules and regulations. E- Grading policy: University rules and regulations

F- Available university services that support achievement in the course: N/A

27. References:

A- Required book(s), assigned reading and audio-visuals: A- Required book (s), assigned reading and audio-visuals:

1- Ivano Bertini, Harry B. Gray, Edward I. Stiefel, Joan Selverstone Valentine, Biological Inorganic Chemistry – Structure & Reactivity "

B- Recommended books, materials, and media: 1. Inorganic Chemistry, by Catherine E. Housecroft and Alan G. Sharpe, 5th edition, Pearson, 2018. Page 1098 / chapter 29 / The trace metals of life

28. Additional information:

Name of the Instructor or the Course Coordinator: Dr. Afnan Al-Hunati	Signature:	Date: 16.11.2024
The Head of Graduate Studies Committee/ Department Chemistry Dr. Murad AlDamen, Prof.	Signature:	Date:
The Head of Department of Chemistry Dr. Murad AlDamen, Prof.	Signature:	Date:
	•••••	••••••

الجامعة الأردنية

Vice Dean for Graduate Studies and Scientific Research / School of Science	Signature:	Date:
Dr. Kamal Sweidan, Prof.	•••••	•••••
The Dean of School of Science Dr. Mahmoud I. Jaghoub, Prof.	Signature:	Date:
	•••••	•••••